Ultrastructure of acidic polysaccharides from the cell walls of brown algae
We have studied the ultrastructure of acidic polysaccharides from the cell walls of brown algae using a variety of electron microscopy techniques. Polysaccharides from Padina gymnospora present self assembled structures, forming trabecular patterns. Purified fractions constituted by alginic acid and...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2004-03, Vol.145 (3), p.216-225 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have studied the ultrastructure of acidic polysaccharides from the cell walls of brown algae using a variety of electron microscopy techniques. Polysaccharides from
Padina gymnospora present self assembled structures, forming trabecular patterns. Purified fractions constituted by alginic acid and sulfated fucan also form well-organized ultrastructures, but the pattern of organization varies depending on the polysaccharide species. Alginic acid presents sponge-like structures. Sulfated fucan exhibits particles with polygonal forms with a polycrystalline structure. These particles are in fact constituted by sulfated fucan molecules since they are recognized by a lectin specific for α-
l-fucosyl residues. X-ray microanalysis reveal that S is a constituent element, as expected for sulfated groups. Finally, an exhaustive purified sulfated fucan shows the same ultrastructure formed by polygonal forms. Furthermore, elemental analyses of acidic polysaccharides indicate that they retain Zn, when algae were collected from a contaminated area. This observation is supported by direct quantification of heavy metal in the biomass and also in the solubilized polysaccharides compared with the algae from a non-contaminated site. We conclude that these molecules have specific ultrastructure and elemental composition; and act as metal binder for the nucleation and precipitation of heavy metals when the algae are exposed to a metal contaminated environment. |
---|---|
ISSN: | 1047-8477 1095-8657 |
DOI: | 10.1016/j.jsb.2003.11.011 |