Structural Mechanism of the Bromodomain of the Coactivator CBP in p53 Transcriptional Activation
Lysine acetylation of the tumor suppressor protein p53 in response to a wide variety of cellular stress signals is required for its activation as a transcription factor that regulates cell cycle arrest, senescence, or apoptosis. Here, we report that the conserved bromo-domain of the transcriptional...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2004-01, Vol.13 (2), p.251-263 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lysine acetylation of the tumor suppressor protein p53 in response to a wide variety of cellular stress signals is required for its activation as a transcription factor that regulates cell cycle arrest, senescence, or apoptosis. Here, we report that the conserved bromo-domain of the transcriptional coactivator CBP (CREB binding protein) binds specifically to p53 at the C-terminal acetylated lysine 382. This bromodomain/acetyl-lysine binding is responsible for p53 acetylation-dependent coactivator recruitment after DNA damage, a step essential for p53-induced transcriptional activation of the cyclin-dependent kinase inhibitor p21 in G1 cell cycle arrest. We further present the three-dimensional nuclear magnetic resonance structure of the CBP bromodomain in complex with a lysine 382-acetylated p53 peptide. Using structural and biochemical analyses, we define the molecular determinants for the specificity of this molecular recognition. |
---|---|
ISSN: | 1097-2765 1097-4164 |
DOI: | 10.1016/S1097-2765(03)00528-8 |