Growth factor-dependent differentiation along the myeloid and lymphoid lineages in an immature acute T lymphocytic leukemia

Bone marrow cells from a child with an immature (CD2+, CD5+, CD7+) acute T lymphocytic leukemia (T-ALL) were cultured in the presence and absence of human rIL-2, IL-3, or granulocyte-macrophage (GM)-CSF. Cells cultured without growth factors failed to divide and those initiated in the presence of IL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1990-12, Vol.145 (11), p.3779-3789
Hauptverfasser: O'Connor, R, Cesano, A, Kreider, BL, Lange, B, Clark, SC, Nowell, PC, Finan, J, Rovera, G, Santoli, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bone marrow cells from a child with an immature (CD2+, CD5+, CD7+) acute T lymphocytic leukemia (T-ALL) were cultured in the presence and absence of human rIL-2, IL-3, or granulocyte-macrophage (GM)-CSF. Cells cultured without growth factors failed to divide and those initiated in the presence of IL-2 or GM-CSF underwent maturation and terminal T lymphoid or myelomonocytic differentiation, respectively. In contrast, a permanent growth factor-dependent cell line, designated TALL-103/3, was established upon culture in IL-3. The TALL-103/3 cells gradually lost the T cell-specific markers and acquired a myeloid phenotype (CD15+, CD33+). Switching of the IL-3-dependent cells at an early passage to medium containing only human rIL-2 resulted in the establishment of a subline, named TALL-103/2, with a T lymphoid phenotype (CD3+, CD8+, TCR-gamma delta +, CD7+). The TALL-103/2 cells strictly require IL-2 for growth, are irreversibly committed to the lymphoid lineage, and cannot survive in the presence of any other hemopoietic growth factor tested so far. In contrast, the IL-3-dependent TALL-103/3 cells could be adapted to grow in synthetic (serum-free) medium also in the presence of either GM-CSF or IL-5, in which they retain a myeloid phenotype. Interestingly, after 18 mo in culture in IL-3, the TALL-103/3 cells can still be phenotypically converted to the lymphoid lineage upon addition of IL-2, thus maintaining its bipotentiality. Despite the marked phenotypic differences, the TALL-103/2 and TALL-103/3 cell lines show the same karyotypes with multiple abnormalities present in the primary malignant clone and have identical rearrangements of the TCR-gamma and -delta loci, thus confirming their derivation from a common precursor cell. Together, these findings indicate that the phenotype of immature T-ALL cells can be drastically modified by the presence of specific hemopoietic growth factors in the environment, leading to either lymphoid or myeloid lineage commitment while leaving their karyotype and genotype intact.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.145.11.3779