Dynamics of an Enzymatic Substitution Reaction in Haloalkane Dehalogenase

Reactive flux molecular dynamics simulations have been carried out using a combined QM/MM potential to study the dynamics of the nucleophilic substitution reaction of dichloroethane by a carboxylate group in haloalkane dehalogenase and in water. We found that protein dynamics accelerates the reactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2004-02, Vol.126 (5), p.1369-1376
Hauptverfasser: Nam, Kwangho, Prat-Resina, Xavier, Garcia-Viloca, Mireia, Devi-Kesavan, Lakshmi S, Gao, Jiali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive flux molecular dynamics simulations have been carried out using a combined QM/MM potential to study the dynamics of the nucleophilic substitution reaction of dichloroethane by a carboxylate group in haloalkane dehalogenase and in water. We found that protein dynamics accelerates the reaction rate by a factor of 2 over the uncatalyzed reaction. Compared to the thermodynamic effect in barrier reduction, protein dynamic contribution is relatively small. However, analyses of the friction kernel reveal that the origins of the reaction dynamics in water and in the enzyme are different. In aqueous solution, there is significant electrostatic solvation effect, which is reflected by the slow reorganization relaxation of the solvent. On the other hand, there is no strong electrostatic coupling in the enzyme and the major effect on reaction coordinate motion is intramolecular energy relaxation.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja039093l