Role of Pax2 in Apoptosis Resistance and Proinvasive Phenotype of Kaposi's Sarcoma Cells

In this study, we found that Kaposi's sarcoma cells but not human microvascular endothelial cells expressed PAX2, a gene coding for a transcription factor involved both in organogenesis and tumorigenesis. Moreover, Pax2 was frequently expressed, on spindle-shaped cells, in Kaposi's sarcoma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-02, Vol.279 (6), p.4136-4143
Hauptverfasser: Buttiglieri, Stefano, Deregibus, Maria Chiara, Bravo, Stefania, Cassoni, Paola, Chiarle, Roberto, Bussolati, Benedetta, Camussi, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we found that Kaposi's sarcoma cells but not human microvascular endothelial cells expressed PAX2, a gene coding for a transcription factor involved both in organogenesis and tumorigenesis. Moreover, Pax2 was frequently expressed, on spindle-shaped cells, in Kaposi's sarcoma lesions. We cloned PAX2 from Kaposi's sarcoma cells and obtained antisense and sense DNA. Transfection of Kaposi's sarcoma cells with antisense DNA, which suppressed Pax2 protein expression, reduced cell growth and survival and enhanced the sensitivity of Kaposi's sarcoma cells to apoptosis induced by serum deprivation or vincristine treatment. In addition, antisense transfection inhibited the cell motility, the invasion of Matrigel, and the spindle shape morphology, which are characteristics of Kaposi's sarcoma cells. Moreover, the αvβ3 integrin, known to be involved in tumor invasion, was down-regulated. To evaluate the possible role of Pax2 expression in the endothelial origin of Kaposi's sarcoma cells, human microvascular endothelial cells were transfected with sense DNA. Endothelial cells transfected with sense PAX2 acquired spindle shape morphology, showed enhanced motility and Matrigel invasion, and displayed an enhanced expression of αvβ3 integrin. In conclusion, the expression of Pax2 by Kaposi's sarcoma cells correlated with an enhanced resistance against apoptotic signals and with the proinvasive phenotype. Moreover, PAX2-transfected endothelial cells acquired a phenotype resembling that of Kaposi's lesional cells, suggesting a role of this embryonic gene in tumorigenesis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M306824200