Effects of the activity of the internal globus pallidus-pedunculopontine loop on the transmission of the subthalamic nucleus-external globus pallidus-pacemaker oscillatory activities to the cortex

Resting tremor is the most specific sign for idiopathic Parkinson' disease. It has been proposed that parkinsonian tremor results from the activity of the central oscillators. One of the hypotheses, which have been proposed about the possible principles underlying such central oscillations, is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational neuroscience 2004-03, Vol.16 (2), p.113-127
Hauptverfasser: Hadipour Niktarash, Arash, Shahidi, Gholam Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resting tremor is the most specific sign for idiopathic Parkinson' disease. It has been proposed that parkinsonian tremor results from the activity of the central oscillators. One of the hypotheses, which have been proposed about the possible principles underlying such central oscillations, is the subthalamic nucleus (STN)-external globus pallidus (GPe)-pacemaker hypothesis. Activity from the central oscillator is proposed to be transmitted via trans-cortical pathways to the periphery. A computational model of the basal ganglia (BG) is proposed for simulating the effects of the internal globus pallidus (GPi)-pedunculopontine (PPN) loop activity on the transmission of the STN-GPe-pacemaker oscillatory activities to the cortex, based on known anatomy and physiology of the BG. According to the result of the simulation, the GPi-PPN loop activity can suppress the transmission of the STN-GPe-pacemaker oscillatory activities to the cortex. This suppressive effect is controlled by various factors such as the strength of the synaptic connection from the PPN to the GPi, the strength of the synaptic connection from the GPi to the PPN, the spontaneous tonic activities of the GPi and PPN, the direct excitatory projections from the STN to the PPN, the frequency of the STN oscillatory burst activity, the duration of the STN burst, and the maximum T-type calcium channel conductance in the type-I PPN neurons.
ISSN:0929-5313
1573-6873
DOI:10.1023/B:JCNS.0000014105.87625.5f