Redox-sensitive mechanism of no scavenging by nitronyl nitroxides

Nitronyl nitroxides, NN ·, have been increasingly used in the field of NO-related studies as specific antagonists of NO ·. We employed a combination of EPR and NMR spin trapping to study the mechanisms of the reaction of NN · with NO · in reducing environments. EPR allowed observation of NO-induced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2004-01, Vol.36 (2), p.248-258
Hauptverfasser: Bobko, Andrey A., Bagryanskaya, Elena G., Reznikov, Vladimir A., Kolosova, Nataljya G., Clanton, Thomas L., Khramtsov, Valery V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitronyl nitroxides, NN ·, have been increasingly used in the field of NO-related studies as specific antagonists of NO ·. We employed a combination of EPR and NMR spin trapping to study the mechanisms of the reaction of NN · with NO · in reducing environments. EPR allowed observation of NO-induced transformation of the paramagnetic trap, NN ·, to the corresponding iminonitroxide, IN ·. In a complementary way, corresponding EPR-invisible diamagnetic products (the hydroxylamines NN–H and IN–H) were detected by 19F-NMR using newly synthesized fluorinated traps. Addition of reducing agents to a solution of NN · resulted in fast disappearance of its EPR spectra and appearance of a 19F-NMR peak of the corresponding hydroxylamine, NN–H. Addition of NO · as a bolus, or NO · generated on sodium nitroprusside photolysis, resulted in 19F-NMR-detectable accumulation of the hydroxylamine, IN–H. Upon high rates of NO · generation in ascorbate-containing solutions, partial recovery of NN · was observed, which undergoes further reactions with NO · and ascorbate in a competitive manner. Using 19F-NMR and a fluorinated trap, NO-induced conversion of NN–H into IN–H was also observed in vivo in hypertensive ISIAH rats compared with normotensive WAG rats. The results provide insight into a new potential redox-sensitive mechanism of the antagonistic action of NN · against NO ·, which may provide insight into previously unexplained behavior of this category of NO-reacting compounds.
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2003.10.022