Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours
The Wilms' tumour suppressor gene, WT1, is mutated in 10–15% of Wilms' tumours and encodes zinc-finger proteins with diverse cellular functions critical for nephrogenesis, genitourinary development, haematopoiesis and sex determination. Here we report that a novel alternative WT1 transcrip...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2004-02, Vol.13 (4), p.405-415 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Wilms' tumour suppressor gene, WT1, is mutated in 10–15% of Wilms' tumours and encodes zinc-finger proteins with diverse cellular functions critical for nephrogenesis, genitourinary development, haematopoiesis and sex determination. Here we report that a novel alternative WT1 transcript, AWT1, is co-expressed with WT1 in renal and haematopoietic cells. AWT1 maintains WT1 exonic structure between exons 2 and 10, but deploys a new 5′-exon located in intron 1 of WT1. The AWT1 gene predicts proteins of approximately 33 kDa, comprising all exon 5 and exon 9 splicing variants previously characterized for WT1. Although WT1 is not genomically imprinted in kidney, we have previously shown monoallelic expression of a WT1 antisense transcript (WT1-AS) that is consistent with genomic imprinting. Here we demonstrate that both WT1-AS and the novel AWT1 transcript are imprinted in normal kidney with expression confined to the paternal allele. Wilms' tumours display biallelic AWT1 expression, indicating relaxation of imprinting of AWT1 in a subset of WTs. Our findings define human chromosome 11p13 as a new imprinted locus, and also suggest a possible molecular basis for the strong bias of paternal allele mutations and variable penetrance observed in syndromes with inherited WT1 mutations. |
---|---|
ISSN: | 0964-6906 1460-2083 1460-2083 |
DOI: | 10.1093/hmg/ddh038 |