Cystatin forms a Tetramer through Structural Rearrangement of Domain-swapped Dimers prior to Amyloidogenesis
The cystatins were the first amyloidogenic proteins to be shown to oligomerize through a 3D domain swapping mechanism. Here we show that, under conditions leading to the formation of amyloid deposits, the domain-swapped dimer of chicken cystatin further oligomerizes to a tetramer, prior to fibrilliz...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2004-02, Vol.336 (1), p.165-178 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cystatins were the first amyloidogenic proteins to be shown to oligomerize through a 3D domain swapping mechanism. Here we show that, under conditions leading to the formation of amyloid deposits, the domain-swapped dimer of chicken cystatin further oligomerizes to a tetramer, prior to fibrillization. The tetramer has a very similar circular dichroism and fluorescence signature to the folded monomer and dimer structures, but exhibits some loss of dispersion in the
1H-NMR spectrum. 8-Anilino-1-naphthalene sulfonate fluorescence enhancement indicates an increase in the degree of disorder. While the dimerization reaction is bimolecular and most likely limited by the availability of a predominantly unfolded form of the monomer, the tetramerization reaction is first-order. The tetramer is formed slowly (
t
1/2=six days at 85 °C), dimeric cystatin is the precursor to tetramer formation, and thus the rate is limited by structural rearrangement within the dimer. Some higher-order oligomerization events parallel tetramer formation while others follow from the tetrameric form. Thus, the tetramer is a transient intermediate within the pathway of large-scale oligomerization. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2003.12.011 |