Modular DNA-Programmed Assembly of Linear and Branched Conjugated Nanostructures

A new strategy for self-assembly and covalent coupling of encoded molecular modules into nanostructures with predetermined connectivity has been developed. The method uses DNA-functionalized oligo(phenylene ethynylene)-derived organic modules for controlling the assembly and covalent coupling of mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2004-02, Vol.126 (4), p.1044-1046
Hauptverfasser: Gothelf, Kurt V, Thomsen, Anne, Nielsen, Morten, Cló, Emiliano, Brown, Raymond S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new strategy for self-assembly and covalent coupling of encoded molecular modules into nanostructures with predetermined connectivity has been developed. The method uses DNA-functionalized oligo(phenylene ethynylene)-derived organic modules for controlling the assembly and covalent coupling of multiple modules. Rigid linear modules (LM) and tripoidal modules (TM) were functionalized with short oligonucleotides at each terminus. They can hybridize and thereby link up modules containing complementary sequences. Each terminus of the oligo(phenylene ethynylene) modules also consists of a salicylaldehyde moiety, which can form metal−salen complexes with other modules. The salicylaldehyde groups of two modules are brought in proximity when their adjoining DNA sequences are complementary, and they selectively form a manganese−salen complex in the presence of ethylenediamine and manganese acetate. The resulting structures consist of a matrix of linear and branched oligo(phenylene ethynylene)s which are linked by conjugated and rigid manganese−salen complexes. These nanostructures are potential conductors for applications in molecular electronics.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja038333u