Conformational preferences of 1,4,7-trithiacyclononane: a molecular mechanics and density functional theory study

Conformational preferences of 1,4,7-trithiacyclononane were studied using a highly efficient sampling technique based on local nonstochastic deformations and the MM2(91) force field. The results show that conformers that the molecule adopts in the crystal state were found to be low-energy conformers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2004-02, Vol.10 (1), p.55-59
Hauptverfasser: Jagannadh, Bulusu, Reddy, Surasani Sumathi, Thangavelu, Ramagounder P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conformational preferences of 1,4,7-trithiacyclononane were studied using a highly efficient sampling technique based on local nonstochastic deformations and the MM2(91) force field. The results show that conformers that the molecule adopts in the crystal state were found to be low-energy conformers (LECs) within 5 kcal mol(-1) of the global minimum. A conformation with C1 symmetry was the global minimum and the C3 and C2 conformations were calculated to be 0.03 and 1.78 kcal mol(-1) higher in energy, respectively. The structures were further minimized using Density Functional Theory (DFT) calculations with two different functionals. The C2 and the C1 conformations were found to be LECs with the C3 conformation more than 4.0 kcal mol(-1) above the global minimum. The relative energies and structural ordering obtained using the BP86 functional are in agreement with the previously reported relative energies calculated using second-order Moller-Plesset (MP2) ab initio calculations. With the energy ordering being dependent on the molecular mechanics force field used, the approach of MM-->DFT (searching exhaustively the available conformational space at the MM level followed by generating the energy ordering through DFT calculations) appears to be appropriate for thiacrown ethers.
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-003-0166-5