A gallium-labeled DOTA-alpha-melanocyte- stimulating hormone analog for PET imaging of melanoma metastases

Although (18)F-FDG PET is widely used for metastatic melanoma diagnosis, it is less accurate than desirable, particularly for small foci. Since both melanotic and amelanotic melanomas overexpress receptors for alpha-melanocyte-stimulating hormone (alpha-MSH; receptor name, melanocortin type 1 recept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nuclear medicine (1978) 2004-01, Vol.45 (1), p.116-123
Hauptverfasser: Froidevaux, Sylvie, Calame-Christe, Martine, Schuhmacher, Jochen, Tanner, Heidi, Saffrich, Rainer, Henze, Markus, Eberle, Alex N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although (18)F-FDG PET is widely used for metastatic melanoma diagnosis, it is less accurate than desirable, particularly for small foci. Since both melanotic and amelanotic melanomas overexpress receptors for alpha-melanocyte-stimulating hormone (alpha-MSH; receptor name, melanocortin type 1 receptor [MC1R]), radiolabeled alpha-MSH analogs are potential candidates for melanoma diagnosis. The aim of this study was to develop a positron emitter-labeled alpha-MSH analog suitable for PET imaging of melanoma metastases. A short linear alpha-MSH analog, [Nle(4),Asp(5),D-Phe(7)]-alpha-MSH(4-11) (NAPamide), was newly designed and conjugated to the metal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to enable radiometal incorporation. Compared with our previously reported DOTA-alpha-MSH analog, DOTA-MSH(oct) ([DOTA-betaAla(3),Nle(4),Asp(5),D-Phe(7),Lys(10)]-alpha-MSH(3-10)), the major modification lies in the conjugation of DOTA to the C-terminal end of the peptide via the epsilon-amino group of Lys(11), as opposed to the N-terminal alpha-amino group. After labeling with (111)In, (67)Ga, and the short-lived positron emitter (68)Ga, DOTA-NAPamide was characterized in vitro and in vivo using the mouse melanoma B16F1cell line. DOTA-NAPamide exhibited an almost 7-fold higher MC1R binding potency as compared with DOTA-MSH(oct). In B16F1 melanoma-bearing mice, both (111)In-DOTA-NAPamide and (67)Ga-DOTA-NAPamide behaved more favorably than (111)In-DOTA-MSH(oct). Both radiopeptides exhibited higher tumor and lower kidney uptake leading to tumor-to-kidney ratios of the 4- to 48-h area under the curve that were 4.6 times ((111)In) and 7.5 times ((67)Ga) greater than that obtained with (111)In-DOTA-MSH(oct). In addition, the 4-h kidney uptake of (67)Ga-DOTA-NAPamide could be reduced by 64% by coinjection of 15 mg L-lysine, without affecting tumor uptake. Skin primary melanoma as well as lung and liver melanoma metastases could be easily visualized on tissue section autoradiographs after systemic injection of (67)Ga-DOTA-NAPamide. The melanoma selectivity of DOTA-NAPamide was confirmed by PET imaging studies using (68)Ga-DOTA-NAPamide. Tumor uptake was found to be highest when the smallest amount of peptide was administered. DOTA-NAPamide labeled with either (111)In or (67)Ga/(68)Ga is in every way superior to (111)In-DOTA-MSH(oct) in murine models of primary and metastatic melanoma, which makes it a promising agent for melanoma targeting. High-cont
ISSN:0161-5505