Amiloride-sensitive Na+ transport across cultured renal (A6) epithelium : evidence for large currents and high Na:K selectivity

Electrical techniques were used to determine the Na:K selectivity of the amiloride-sensitive pathway and to characterize cellular and paracellular properties of A6 epithelium. Under control conditions, the mean transepithelial voltage (VT) was -57 +/- 5 mV, the short-circuit current (Isc) averaged 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 1990-07, Vol.416 (5), p.481-492
Hauptverfasser: WILLS, N. K, MILLINOFF, L. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical techniques were used to determine the Na:K selectivity of the amiloride-sensitive pathway and to characterize cellular and paracellular properties of A6 epithelium. Under control conditions, the mean transepithelial voltage (VT) was -57 +/- 5 mV, the short-circuit current (Isc) averaged 23 +/- 2 microA/cm2 and the transepithelial resistance (RT) was 2.8 +/- 0.3 k omega cm2 (n = 13). VT and Isc were larger than reported in previous studies and were increased by aldosterone. The conductance of the amiloride-sensitive pathway (Gamil) was assessed before and after replacement of Na+ in the mucosal bath by K+, using two independent measurements: (1) the slope conductance (GT), determined from current-voltage (I-V) relationships for control and amiloride-treated tissues and (2) the maximum amiloride-sensitive conductance (Gmax) calculated from the amiloride dose-response relationship. The ratio of Gamil in mucosal Na+ solutions to Gamil for mucosal K+ solutions was 22 +/- 6 for GT measurements and 15 +/- 2 for Gmax data. Serosal ion replacements in tissues treated with mucosal nystatin indicated a potassium conductance in the basolateral membrane. Equivalent circuit analyses of nystatin and amiloride data were used to resolve the cellular (Ec) and paracellular (Rj) resistances (approximately 5 k omega cm2 and 8-9 k omega cm2, respectively). Analysis of I-V relationships for tissues depolarized with serosal K+ solutions revealed that the amiloride-sensitive pathway could be described as a Na+ conductance with a permeability coefficient (PNa) = 1.5 +/- 0.2 x 10(-6) cm/s and the intracellular Na+ concentration (Nai) = 5 +/- 1 mM (n = 5), similar to values from other tight epithelia. We conclude that A6 epithelia are capable of expressing large amiloride-sensitive currents which are highly Na+ selective.
ISSN:0031-6768
1432-2013
DOI:10.1007/BF00382680