Protein L-isoaspartyl methyltransferase repairs abnormal aspartyl residues accumulated in vivo in type-I collagen and restores cell migration

Abnormal aspartyl residue formation such as L-isoaspartates occurs frequently during aging in long-lived proteins, resulting in the alteration of their structures and biological functions. In this study, we investigated the alteration of aspartyl residues in extracellular matrix (ECM) proteins, type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2004-02, Vol.293 (1), p.96-105
Hauptverfasser: Lanthier, Julie, Desrosiers, Richard R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abnormal aspartyl residue formation such as L-isoaspartates occurs frequently during aging in long-lived proteins, resulting in the alteration of their structures and biological functions. In this study, we investigated the alteration of aspartyl residues in extracellular matrix (ECM) proteins, type-I collagen and fibronectin, and in integrin- and ECM-binding motifs during aging, as well as the resulting effects on cell biological functions such as migration and attachment. Using protein L-isoaspartyl methyltransferase (PIMT) to monitor the presence of L-isoaspartyl residues, we showed their accumulation during in vivo aging in type-I collagen from rats. In vitro aging of fibronectin as well as of peptides containing an integrin- or ECM-binding motif such as RGDSR, KDGEA and KDDL also resulted in the formation of L-isoaspartyl residues. While aged fibronectin does not alter cell adhesion and migration, type-I collagen aged 20 months reduced by 65% cell motility, but not adhesion, when compared to 3-month-aged type-I collagen. Finally, by repairing 20-month-old type-I collagen with recombinant PIMT (rPIMT), cell migration was recovered by 72%. These results strongly suggest that L-isoaspartyl residue formation in ECM proteins such as type-I collagen could play an important role in reducing cell migration and that PIMT could be a therapeutic tool to restore normal cell migration in pathological conditions where cell motility is crucial.
ISSN:0014-4827
DOI:10.1016/j.yexcr.2003.10.003