DBCCR1 mediates death in cultured bladder tumor cells

Chromosome 9, which is often partially or fully reduced to homozygosity in bladder cancer cells, harbors several tumor suppressor loci including deleted in bladder cancer chromosome region 1 (DBCCR1) at 9q32–33. To study DBCCR1 function, stable cell lines, inducible for DBCCR1 expression by tetracyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2004-01, Vol.23 (1), p.82-90
Hauptverfasser: Wright, Kate O, Messing, Edward M, Reeder, Jay E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromosome 9, which is often partially or fully reduced to homozygosity in bladder cancer cells, harbors several tumor suppressor loci including deleted in bladder cancer chromosome region 1 (DBCCR1) at 9q32–33. To study DBCCR1 function, stable cell lines, inducible for DBCCR1 expression by tetracycline, were made, but the DBCCR1 protein was not expressed at detectable levels. To understand the fate of DBCCR1-expressing cells, human bladder tumor cells were transiently transfected with an expression vector containing DBCCR1 fused to enhanced green fluorescent protein (EGFP). Initially, DBCCR1–EGFP-expressing cells demonstrated diffuse cytoplasmic green fluorescence with nuclear exclusion patterns. After time, the intensity level of green fluorescence increased and a granular distribution of protein became visible in the cells. At this point, cells rounded up and detached from the tissue culture dish. Cells transfected with a control vector, containing only EGFP, and partial DBCCR1–EGFP fusion constructs did not demonstrate this behavior. DBCCR1-mediated cell death in cultured tumor cells was independent of caspase-3 activation and did not result in detectable DNA strand breaks by TUNEL staining that are hallmarks of the classical apoptotic pathway.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1206642