NF-kappa B p65 antagonizes IL-4 induction by c-maf in minimal change nephrotic syndrome

Mechanisms underlying the pathophysiology of minimal change nephrotic syndrome (MCNS), the most frequent of glomerular diseases in children, remain elusive, although recent arguments suggest that T cell dysfunction may be involved in the pathogenesis of this disease. Recently, we reported that activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2004-01, Vol.172 (1), p.688-698
Hauptverfasser: Valanciuté, Asta, le Gouvello, Sabine, Solhonne, Brigitte, Pawlak, André, Grimbert, Philippe, Lyonnet, Luc, Hue, Sophie, Lang, Philippe, Remy, Philippe, Salomon, Rémy, Bensman, Albert, Guellaën, Georges, Sahali, Djillali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanisms underlying the pathophysiology of minimal change nephrotic syndrome (MCNS), the most frequent of glomerular diseases in children, remain elusive, although recent arguments suggest that T cell dysfunction may be involved in the pathogenesis of this disease. Recently, we reported that activated T cells of these patients display a down-regulation of IL-12R beta2 chain, suggesting an early commitment toward Th2 phenotype. In this study, we show that the short form of the proto-oncogene c-maf, a known activator of the IL-4 gene, is highly induced in MCNS T cells during relapse, where it translocates to the nuclear compartment and binds to the DNA responsive element. Unexpectedly, the nuclear localization of c-maf did not promote the IL-4 gene transcription in relapse. Using several approaches, we show in this study that RelA blunts IL-4 induction in T cells during the relapse in these patients. We demonstrate that the ex vivo inhibition of proteasome activity in T cells from relapse, which blocks NF-kappaB activity, strongly increases the IL-4 mRNA levels. Overexpression of c-maf in T cells induces a high level of IL-4 promoter-driven luciferase activity. In contrast, coexpression of c-maf with NF-kappaB RelA/p50, or RelA, but not p50, inhibits the c-maf-dependent IL-4 promoter activity. Finally, we demonstrated that, in T cell overexpressing RelA and c-maf, RelA expelled c-maf from its DNA binding site on IL-4 gene promoter, which results in active inhibition of IL-4 gene transcription. Altogether, these results suggest that the involvement of c-maf in Th2 commitment in MCNS operates through IL-4-independent mechanisms.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.172.1.688