Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium

We reported previously that cadmium, an oxidative stressor, induced cyclooxygenase-2 (COX-2) upregulation in mouse neuronal cells that culminated in cell death. Herein, we show that cadmium induces reactive oxygen species (ROS) that activate c-Jun N-terminal kinase (JNK) and p38 mitogen-activated pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular signalling 2004-03, Vol.16 (3), p.343-353
Hauptverfasser: Rockwell, Patricia, Martinez, Jennifer, Papa, Luena, Gomes, Evan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We reported previously that cadmium, an oxidative stressor, induced cyclooxygenase-2 (COX-2) upregulation in mouse neuronal cells that culminated in cell death. Herein, we show that cadmium induces reactive oxygen species (ROS) that activate c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) and their substrates, activating transcription factor 2 (ATF-2), CRE-binding protein (CREB) and c-Jun. This response is accompanied by induction of heme-oxygenase-1 (HO-1), poly(ADP-ribose) polymerase cleavage and a caspase-independent cell death. Inhibition of p38 MAPK, but not JNK, suppressed COX-2 protein expression and the cytotoxic response induced by cadmium. Selective inhibitors of phosphatidylinositol-3-kinase (PI3-K), LY294002, and flavoproteins, dipheneylene iodonium chloride (DPI), attenuated cadmium-induced ROS and stress kinase activation, suggesting that ROS can signal the COX-2 upregulation and neuronal cell death mediated by p38 MAPK. Collectively, these findings implicate PI3-K, a flavoprotein, p38 MAPK and COX-2 in a neuronal redox-regulated pathway that mediates cadmium-induced oxidative stress.
ISSN:0898-6568
1873-3913
DOI:10.1016/j.cellsig.2003.08.006