Control of yeast mating signal transduction by a mammalian beta 2-adrenergic receptor and Gs alpha subunit
To facilitate functional and mechanistic studies of receptor-G protein interactions, [corrected] the human beta 2-adrenergic receptor (h beta-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h beta-AR gene under control of the galactose-inducible GAL1 promo...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1990-10, Vol.250 (4977), p.121-123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To facilitate functional and mechanistic studies of receptor-G protein interactions, [corrected] the human beta 2-adrenergic receptor (h beta-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h beta-AR gene under control of the galactose-inducible GAL1 promoter. After induction by galactose, functional h beta-AR was expressed at a concentration several hundred times as great as that found in any human tissue. As determined from competitive ligand binding experiments, h beta-AR expressed in yeast displayed characteristic affinities, specificity, and stereoselectivity. Partial activation of the yeast pheromone response pathway by beta-adrenergic receptor agonists was achieved in cells coexpressing h beta-AR and a mammalian G protein (Gs) alpha subunit-demonstrating that these components can couple to each other and to downstream effectors when expressed in yeast. This in vivo reconstitution system provides a new approach for examining ligand binding and G protein coupling to cell surface receptors. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.2171146 |