Light-dependent Formation of the Photosynthetic Proton Gradient Regulates Translation Elongation in Chloroplasts
Upon transfer of lysed chloroplasts from darkness to light, the accumulation of membrane and stromal chloroplast proteins is strictly regulated at the level of translation elongation. In darkness, translation elongation is retarded even in the presence of exogenously added ATP and dithiothreitol. In...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1998-08, Vol.273 (33), p.20935-20940 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Upon transfer of lysed chloroplasts from darkness to light, the accumulation of membrane and stromal chloroplast proteins is strictly regulated at the level of translation elongation. In darkness, translation elongation is retarded even in the presence of exogenously added ATP and dithiothreitol. In the light, addition of the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl urea inhibits translation elongation even in the presence of ATP. This inhibition can be overcome by addition of artificial electron donors in the presence of light, but not in darkness. Electron flow between photosystem II and I induced by far red light of 730 nm is sufficient for the activation of translation elongation. This activation can also be obtained by electron donors to photosystem I, which transport protons into the thylakoid lumen. Release of the proton gradient by uncouplers prevents the light-dependent activation of translation elongation. Also, the induction of translation activation is switched off rapidly upon transfer from light to darkness. Hence, we propose that the formation of a photosynthetic proton gradient across the thylakoid membrane activates translation elongation in chloroplasts. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.273.33.20935 |