Dominant negative regulation by c-Jun of transcription of the uncoupling protein-1 gene through a proximal cAMP-regulatory element: a mechanism for repressing basal and norepinephrine-induced expression of the gene before brown adipocyte differentiation

The brown fat uncoupling protein-1 (ucp-1) gene is regulated by the sympathetic nervous system, and its transcription is stimulated by norepinephrine, mainly through cAMP-mediated pathways. Overexpression of the catalytic subunit of protein kinase A stimulated a chloramphenicol acetyltransferase exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular endocrinology (Baltimore, Md.) Md.), 1998-07, Vol.12 (7), p.1023-1037
Hauptverfasser: Yubero, P, Barberá, M J, Alvarez, R, Viñas, O, Mampel, T, Iglesias, R, Villarroya, F, Giralt, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The brown fat uncoupling protein-1 (ucp-1) gene is regulated by the sympathetic nervous system, and its transcription is stimulated by norepinephrine, mainly through cAMP-mediated pathways. Overexpression of the catalytic subunit of protein kinase A stimulated a chloramphenicol acetyltransferase expression vector driven by the 4.5-kb 5'-region of the rat ucp-1 gene. Mutant deletion analysis indicated the presence of the main cAMP-regulatory element (CRE) in the proximal region between -141 and -54. This region contains an element at -139/-122 able to confer enhancer and protein kinase A (PKA)-dependent activity to the basal thymidine kinase promoter. The potency of this element was much higher in differentiated than in nondifferentiated brown adipocytes. Gel shift analyses indicated that a complex array of proteins from brown fat nuclei bind to the -139/-122 element, among which CRE-binding protein (CREB) and Jun proteins were identified. In transfected brown adipocytes, c-Jun was a negative regulator of basal and PKA-induced transcription from the ucp-1 promoter acting through this proximal CRE region. A double-point mutation in the -139/-122 element abolished both PKA- and c-Jun-dependent regulation through this site, and overexpression of CREB blocked c-Jun repression. Thus, an opposite action of these two transcription factors on the -139/-122 CRE is proposed. c-Jun content in brown adipocytes differentiating in culture correlated negatively with both ucp-1 gene expression and the acquisition of the brown adipocyte morphology. These findings indicate that c-Jun provides a molecular mechanism to repress the basal and cAMP-mediated expression of the ucp-1 gene before the differentiation of the brown adipocyte.
ISSN:0888-8809
DOI:10.1210/me.12.7.1023