EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been exam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 1998-07, Vol.133 (1), p.1-12
Hauptverfasser: Ardenkjær-Larsen, J.H., Laursen, I, Leunbach, I., Ehnholm, G., Wistrand, L.-G., Petersson, J.S., Golman, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been examined with electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and dynamic nuclear polarization (DNP) at 9.5 mT in water, isotonic saline, plasma, and blood at 23 and 37°C. The relaxivities of the agents are about 0.2–0.4 mM−1s−1and the DNP enhancements extrapolate close to the dipolar limit. The agents have a single, narrow EPR line, which is analyzed as a Voigt function. The linewidth is measured as a function of the agent concentration and the oxygen concentration. The concentration broadenings are about 1–3 μT/mM and the Lorentzian linewidths at infinite dilution are less than 1 μT in water at room temperature. The longitudinal electron spin relaxation rate is calculated from the DNP enhancement curves. The oxygen broadening in water is about 50 μT/mM O2at 37°C. These agents have good properties for oximetry with OMRI.
ISSN:1090-7807
1096-0856
DOI:10.1006/jmre.1998.1438