A ribosomal protein is encoded in the chloroplast DNA in a lower plant but in the nucleus in angiosperms. Isolation of the spinach L21 protein and cDNA clone with transit and an unusual repeat sequence

The distribution of chloroplast ribosomal protein genes between the organelle DNA and the nuclear DNA is highly conserved in land plants, but a notable exception is rpl21. This gene has been found in the completely sequenced chloroplast genome of a lower plant but not in that of two higher plants. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1990-09, Vol.265 (27), p.16699-16703
Hauptverfasser: Smooker, P M, Kruft, V, Subramanian, A R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The distribution of chloroplast ribosomal protein genes between the organelle DNA and the nuclear DNA is highly conserved in land plants, but a notable exception is rpl21. This gene has been found in the completely sequenced chloroplast genome of a lower plant but not in that of two higher plants. We describe the purification and characterization of the spinach chloroplast ribosomal protein L21 and the isolation and nucleotide sequence of a cDNA clone that encodes its cytoplasmic precursor. The mature protein, identified by NH2-terminal sequencing, has 201 residues (Mr 22,766) and is thus substantially larger than either its Escherichia coli (103 residues) or the lower plant homologue (116 residues). The extra length is in peptide extensions at both amino and carboxyl termini. The COOH-terminal extension is unusual in that it comprises seven Ala-Glu repeats, a feature not found in any other ribosomal proteins described so far. The cDNA clone also encodes a 55-residue long transit peptide (with a high proportion of the polar residues, threonine and serine), to target the L21 protein into chloroplasts. The identification of rpl21 as a nuclear gene in a higher plant (spinach) and chloroplast gene in a lower plant (liverwort) suggests an organelle-to-nucleus gene relocation during the evolution of the former.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)46277-6