Synthesis and Evaluation of Peptidyl Michael Acceptors That Inactivate Human Rhinovirus 3C Protease and Inhibit Virus Replication

Human rhinovirus, the chief cause of the common cold, contains a positive-sense strand of RNA which is translated into a large polyprotein in infected cells. Cleavage of the latter to produce the mature viral proteins required for replication is catalyzed in large part by a virally encoded cysteine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 1998-07, Vol.41 (14), p.2579-2587
Hauptverfasser: Kong, Jian-she, Venkatraman, Shankar, Furness, Kelly, Nimkar, Sanjay, Shepherd, Timothy A, Wang, Q. May, Aubé, Jeffrey, Hanzlik, Robert P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human rhinovirus, the chief cause of the common cold, contains a positive-sense strand of RNA which is translated into a large polyprotein in infected cells. Cleavage of the latter to produce the mature viral proteins required for replication is catalyzed in large part by a virally encoded cysteine proteinase (3Cpro) which is highly selective for −Q∼GP− cleavage sites. We synthesized peptidyl derivatives of vinylogous glutamine or methionine sulfone esters (e.g., Boc-Val-Leu-Phe-vGln-OR:  R = Me, 1; R = Et, 2) and evaluated them as inhibitors of HRV-14 3C protease (3Cpro). Compounds 1 and 2 and several related tetra- and pentapeptide analogues rapidly inactivated 3Cpro with submicromolar IC50 values. Electrospray mass spectrometry confirmed the expected 1:1 stoichiometry of 3Cpro inactivation by 1, 2, and several other analogues. Compound 2 also proved to be useful for active site titration of 3Cpro, which has not been possible heretofore because of the lack of a suitable reagent. In contrast to 1, 2, and congeners, peptidyl Michael acceptors lacking a P4 residue have greatly reduced or negligible activity against 3Cpro, consistent with previously established structure−activity relationships for 3Cpro substrates. Hydrolysis of the P1 vinylogous glutamine ester to a carboxylic acid also decreased inhibitory activity considerably, consistent with the decreased reactivity of acrylic acids vs acrylic esters as Michael acceptors. Incorporating a vinylogous methionine sulfone ester in place of the corresponding glutamine derivative in 1 also reduced activity substantially. Compounds 1 and 2 and several of their analogues inhibited HRV replication in cell culture by 50% at low micromolar concentrations while showing little or no evidence of cytotoxicity at 10-fold higher concentrations. Peptidyl Michael acceptors and their analogues may prove useful as therapeutic agents for pathologies involving cysteine proteinase enzymes.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm980114+