A naturally occurring mutation of insulin receptor alanine 1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance

We have identified a previously undescribed genetic variant of the insulin receptor (Ala1134---Thr1134) in a family with the Type A syndrome of insulin resistance. Using the polymerase chain reaction to amplify insulin receptor cDNA and genomic DNA (exon 19), this mutation was detected in 1/2 allele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1990-09, Vol.265 (25), p.14979-14985
Hauptverfasser: MOLLER, D. E, YOKOTA, A, WHITE, M. F, PAZIANOS, A. G, FLIER, J. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have identified a previously undescribed genetic variant of the insulin receptor (Ala1134---Thr1134) in a family with the Type A syndrome of insulin resistance. Using the polymerase chain reaction to amplify insulin receptor cDNA and genomic DNA (exon 19), this mutation was detected in 1/2 alleles in the proband, her two affected sisters, and her affected father. Two normal alleles were present in the unaffected mother. No additional structural changes were encoded by the remainder of the proband's receptor cDNA. The Ala1134 mutant receptor was expressed in Chinese hamster ovary cells. The expressed mutant receptors were processed normally and displayed normal affinity of insulin binding but were markedly deficient in insulin-stimulated autophosphorylation. The mutant receptor was unable to catalyze the phosphorylation of the endogenous substrate, pp185, and insulin-stimulated kinase activity toward an exogenous substrate in vitro also was markedly impaired. Ala1134 is a highly conserved residue located in a consensus sequence found in most tyrosine kinases. It is likely that this previously uncharacterized residue and/or the immediate region surrounding it are important for normal kinase function in other members of this receptor family. This study also demonstrates that severe insulin resistance with dominant inheritance may be caused by a missense mutation in one allele of the insulin receptor gene.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)77212-8