Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain
The cerebellar Purkinje cell-specific PCP-2 gene is transcriptionally activated by thyroid hormone during the 2nd and 3rd weeks of postnatal life in the rat. In contrast, thyroid hormone has no detectable effects on PCP-2 expression in the fetal rat. We now present data that suggest that the orphan...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1998-06, Vol.273 (26), p.16391-16399 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cerebellar Purkinje cell-specific PCP-2 gene is transcriptionally activated by thyroid hormone during the 2nd and 3rd weeks of postnatal life in the rat. In contrast, thyroid hormone has no detectable effects on PCP-2 expression in the fetal rat. We now present data that suggest that the orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor (COUP-TF) represses triiodothyronine (T3)-dependent transcriptional activation of PCP-2 in the immature Purkinje cell. Gel shift assays show that the PCP-2 A1TRE and adjoining sequences (-295/-199 region) bind to rat and mouse brain nucleoproteins in a developmentally regulated fashion and that one of these nucleoproteins could be the orphan nucleoprotein COUP-TF. In support of this hypothesis, in vitro translated COUP-TF binds to the -295/-199 region and COUP-TF represses T3-dependent activation of the PCP-2 promoter in transient transfection analyses. Finally, immunohistochemical studies reveal that COUP-TF is specifically expressed in the immature fetal and early neonatal Purkinje cell and that this expression diminishes coincident with thyroid hormone induction of PCP-2 expression. Our findings are consistent with the hypothesis that the presence or absence of inhibitory proteins bound to the thyroid hormone response element of T3-responsive genes governs the responsivity of these genes to thyroid hormone during brain development. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.273.26.16391 |