Nonmuscle and smooth muscle myosin isoforms in bovine endothelial cells
A panel of monoclonal antibodies, specific for human platelet (NM-A9, NM-F6, and NM-G2) and for bovine smooth muscle (SM-E7) myosin heavy chains (MHC), were used to study the composition and the distribution of myosin isoforms in bovine endothelial cells (EC), in vivo and in vitro. Using indirect an...
Gespeichert in:
Veröffentlicht in: | Experimental cell research 1990-09, Vol.190 (1), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A panel of monoclonal antibodies, specific for human platelet (NM-A9, NM-F6, and NM-G2) and for bovine smooth muscle (SM-E7) myosin heavy chains (MHC), were used to study the composition and the distribution of myosin isoforms in bovine endothelial cells (EC),
in vivo and
in vitro. Using indirect and double immunofluorescence techniques, we have found that in the intact aortic endothelium there is expression of nonmuscle MHC (NM-MHC), exclusively. By contrast, hepatic sinusoidal endothelium as well as cultured bovine aortic EC (BAEC) in the subconfluent phase of growth show coexistence of NM- and smooth muscle MHC (SM-MHC) isoforms. SM myosin immunoreactivity disappears when cultured BAEC become confluent. In this phase of cell growth, NM-MHC isoforms are localized differently within the cells, i.e., in the cytoplasm around the nucleus or in the cortical, submembranous region of EC cytoplasm. A third type of intracellular distribution of NM-MHC immunoreactivity was evident in the cell periphery of binucleated, confluent BAEC. These data indicate that (1) several myosin isoforms are differently distributed in bovine endothelia; and (2) SM myosin expression and the specific subcellular localization of NM myosin isoforms within EC might be regulated by cell-cell interactions. |
---|---|
ISSN: | 0014-4827 1090-2422 |
DOI: | 10.1016/0014-4827(90)90136-X |