Purified Recombinant Fmrp Exhibits Selective RNA Binding as an Intrinsic Property of the Fragile X Mental Retardation Protein

Fragile X syndrome is caused by the transcriptional silencing of the FMR1 gene due to a trinucleotide repeat expansion. The encoded protein, Fmrp, has been found to be a nucleocytoplasmic RNA-binding protein containing both KH domains and RGG boxes that associates with polyribosomes as a ribonucleop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-06, Vol.273 (25), p.15521-15527
Hauptverfasser: Brown, V, Small, K, Lakkis, L, Feng, Y, Gunter, C, Wilkinson, K D, Warren, S T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fragile X syndrome is caused by the transcriptional silencing of the FMR1 gene due to a trinucleotide repeat expansion. The encoded protein, Fmrp, has been found to be a nucleocytoplasmic RNA-binding protein containing both KH domains and RGG boxes that associates with polyribosomes as a ribonucleoprotein particle. RNA binding has previously been demonstrated with in vitro -translated Fmrp; however, it remained uncertain whether the selective RNA binding observed was an intrinsic property of Fmrp or required an associated protein(s). Here, baculovirus-expressed and affinity-purified FLAG-tagged murine Fmrp was shown to bind directly to both ribonucleotide homopolymers and human brain mRNA. FLAG-Fmrp exhibited selectivity for binding poly(G) > poly(U) ≫ poly(C) or poly(A). Moreover, purified FLAG-Fmrp bound to only a subset of brain mRNA, including the 3′ untranslated regions of myelin basic protein message and its own message. Recombinant isoform 4, lacking the RGG boxes but maintaining both KH domains, was also purified and was found to only weakly interact with RNA. FLAG-purified I304N Fmrp, harboring the mutation of severe fragile X syndrome, demonstrated RNA binding, in contrast to previous suggestions. These data demonstrate the intrinsic property of Fmrp to selectively bind RNA and show FLAG-Fmrp as a suitable reagent for structural characterization and identification of cognate RNA ligands.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.25.15521