Nicotine and nicotinic receptors in the circadian system

Considerable data support a role for cholinergic influences on the circadian system. The extent to which these influences are mediated by nicotinic acetylcholine receptors (nAChRs) has been controversial, as have the specific actions of nicotine and acetylcholine in the suprachiasmatic nucleus (SCN)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychoneuroendocrinology 1998-02, Vol.23 (2), p.161-173
Hauptverfasser: O'Hara, Bruce F., Edgar, Dale M., Cao, Vinh H., Wiler, Steven W., Craig Heller, H., Kilduff, Thomas S., Miller, Joseph D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considerable data support a role for cholinergic influences on the circadian system. The extent to which these influences are mediated by nicotinic acetylcholine receptors (nAChRs) has been controversial, as have the specific actions of nicotine and acetylcholine in the suprachiasmatic nucleus (SCN) of the hypothalamus. In this article we review the existing literature and present new data supporting an important role for nAChRs in both the developing and adult SCN. Specifically, we present data showing that nicotine is capable of causing phase shifts in the circadian rhythms of rats. Like light and carbachol, nicotine appears to cause phase delays in the early subjective night and phase advances in the late subjective night. In the isolated SCN slice, however, only phase advances are seen, and, surprisingly, nicotine appears to cause the inhibition rather than the excitation of neurons. Among nAChR subunit mRNAs, α7 appears to be the most abundant subunit in the adult SCN, whereas in the perinatal period, the more typical nAChRs with higher affinity for nicotine predominate in the SCN. This developmental change in subunit expression may explain the dramatic sensitivity of the perinatal SCN to nicotine that we have previously observed. The effects of nicotine on the SCN may contribute to alterations caused by nicotine in other physiological systems. These effects might also contribute to the dependence properties of nicotine through influences on arousal.
ISSN:0306-4530
1873-3360
DOI:10.1016/S0306-4530(97)00077-2