Homology model of the quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni
A molecular model of QH-ADH, the quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni, has been built by homology modelling. Sequence similarity of N-terminal residues 1-570 with the alpha-subunit of quinoprotein methanol dehydrogenases (MDHs) from Methylophilus methylotrophus W3A1 an...
Gespeichert in:
Veröffentlicht in: | Protein engineering 1998-03, Vol.11 (3), p.185-198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A molecular model of QH-ADH, the quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni, has been built by homology modelling. Sequence similarity of N-terminal residues 1-570 with the alpha-subunit of quinoprotein methanol dehydrogenases (MDHs) from Methylophilus methylotrophus W3A1 and Methylobacterium extorquens provided a basis for the design of the PQQ-binding domain of QH-ADH. Minimal sequence similarity with cytochrome c551 from Ectothiorhodospira halophila and cytochrome c5 from Azotobacter vinelandii has been used to model the C-terminal haem c-binding domain, residues 571-677, absent in MDHs. Distance constraints inferred from 19F-NMR relaxation studies of trifluoromethylphenylhydrazine-derivatized PQQ bound to QH-ADH apoenzyme as well as theoretical relations for optimal electron transfer have been employed to position the haem- and PQQ-binding domains relative to each other. The homology model obtained shows overall topological similarity with the crystal structure of cd1-nitrite reductase from Thiosphera pantotropha. The proposed model accounts for the following: (i) the site that is sensitive to in vivo proteolytic attack; (ii) the substrate specificity in comparison with MDHs; (iii) changes of the spectral properties of the haem c upon reconstitution of apo-enzyme with PQQ; (iv) electronic interaction between haem and PQQ; and (v) enantioselectivity in the conversion of a chiral sec alcohol. |
---|---|
ISSN: | 0269-2139 1741-0126 1741-0134 |
DOI: | 10.1093/protein/11.3.185 |