A freeze-etch study of angular marginal-plate-containing peroxisomes in the proximal tubules of bovine kidney

The ultrastructure of peroxisomes in the proximal nephron tubules of bovine kidney cortex was studied using ultrathin-sectioning, diaminobenzidine cytochemistry for the visualization of catalase, and by freeze-fracture. Peroxisomes in this nephron segment are up to 1.5 microns in diameter and exhibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 1990-05, Vol.260 (2), p.409-414
Hauptverfasser: ZAAR, K, FAHIMI, H. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ultrastructure of peroxisomes in the proximal nephron tubules of bovine kidney cortex was studied using ultrathin-sectioning, diaminobenzidine cytochemistry for the visualization of catalase, and by freeze-fracture. Peroxisomes in this nephron segment are up to 1.5 microns in diameter and exhibit a peculiar angular shape, which is probably related to the occurrence of multiple straight plate-like inclusions (marginal plates) in the matrix of peroxisomes; they lie directly underneath the peroxisomal membranes. The peroxisomal membrane in such regions follows the outline of the marginal plate. The peculiar shape of peroxisomes allows their unequivocal identification in freeze-fracture preparations. Peroxisomal membranes are recognized by their flat, often rectangular appearance. Intramembrane particles are much more numerous on P-fracture faces than on E-fracture faces. A crystalline lattice-structure with a periodicity of approximately 10 nm can be observed on the flat rectangular areas of E-fracture faces. This lattice structure is intensified after prolonged freeze-etching. Intramembranous particles seem to be superimposed over this pattern. The crystalline pattern on the E-fracture faces of peroxisomal membranes is probably not a membrane structure but it reveals the structure of the membrane-associated marginal plates. A cast of the marginal-plate surface may be generated by a collapse of the peroxisomal membrane half onto the immediately underlying matrix inclusion.
ISSN:0302-766X
1432-0878
DOI:10.1007/BF00318644