The Identification of Consonants and Vowels by Cochlear Implant Patients Using a 6-Channel Continuous Interleaved Sampling Processor and by Normal-Hearing Subjects Using Simulations of Processors with Two to Nine Channels
OBJECTIVE:To compare the vowel and consonant identification ability of cochlear implant patients using a 6-channel continuous interleaved sampling (CIS) processor and of normal-hearing subjects using simulations of processors with two to nine channels. DESIGN:Subjects, 10 normal-hearing listeners an...
Gespeichert in:
Veröffentlicht in: | Ear and hearing 1998-04, Vol.19 (2), p.162-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OBJECTIVE:To compare the vowel and consonant identification ability of cochlear implant patients using a 6-channel continuous interleaved sampling (CIS) processor and of normal-hearing subjects using simulations of processors with two to nine channels.
DESIGN:Subjects, 10 normal-hearing listeners and seven cochlear implant patients, were presented synthetic vowels in /bVt/ context, natural vowels produced by men, women, and girls in /hVd/ context, and consonants in /aCa/ context for identification. Stimuli for the normal-hearing subjects were pre-processed through simulations of implant processors with two to nine channels and were output as the sum of sinusoids at the center frequencies of the analysis filters.
RESULTS:Five implant patients' scores fell within the range of normal performance with a 6-channel processor when the patients were tested with synthetic vowels. Four patients' scores fell within the range of normal with a 6-channel processor when the patients were tested with multitalker vowels. Five patients' scores fell within the range of normal for a 6-channel processor for the consonant feature "place of articulation."
CONCLUSION:Signal processing technology for cochlear implants has matured sufficiently to allow some patients who use CIS processors and a small number of monopolar electrodes to achieve scores on tests of speech identification that are within the range of scores established by normal-hearing subjects listening to speech processed through a small number of channels. |
---|---|
ISSN: | 0196-0202 1538-4667 |
DOI: | 10.1097/00003446-199804000-00008 |