Integration of lipid metabolism in the mammary gland and adipose tissue by prolactin during lactation
Prolactin deficiency, induced by bromocryptine treatment, brought about reciprocal changes in the ability of adipocytes and acini isolated from lactating rats to synthesize lipids. The capacity to synthesize fatty acids and phospholipids decreased in the mammary gland and increased in adipocytes by...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 1990-03, Vol.93 (2), p.185-194 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prolactin deficiency, induced by bromocryptine treatment, brought about reciprocal changes in the ability of adipocytes and acini isolated from lactating rats to synthesize lipids. The capacity to synthesize fatty acids and phospholipids decreased in the mammary gland and increased in adipocytes by bromocryptine treatment. In the mammary gland, the maximum potential activity of the pentose shunt as well as the specific activities of the pathway dehydrogenases were significantly reduced by bromocryptine treatment. Simultaneously, adipose tissue increased its lipogenic capacity but neither the maximum potential of the shunt nor the specific activities of the pentose phosphate shunt dehydrogenases were significantly changed with respect to the control lactating rats. Thus, a differential regulatory mechanism(s) of the pentose phosphate shunt activity appears to operate in these two tissues. Adipocytes from lactating rats showed a poor responsiveness to insulin in terms of lipid synthesis from glucose. In contrast, in adipocytes from bromocryptine treated rats insulin was able to increase lipid synthesis (105%). Sheep prolactin administration 'in vivo' partially reversed the effects of bromocryptine. These data suggest that prolactin mediates adipocytes resistance to insulin during lactation. Phospholipid synthesis, as occurred in fatty acid synthesis, is increased in adipose tissue and decreased in mammary gland by bromocryptine treatment. However, alpha 1-adrenergic stimulation increases phosphatidylinositol turnover to about the same percentages in both mammary gland acini and adipocytes from lactating rats independently of bromocryptine treatment. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/BF00226191 |