Experimental results of erbium:YAG laser vitrectomy

Vitrectomy performed by conventional guillotine devices includes the risk of mechanical damage to retina as well as other ocular structures. The present study aims to investigate the efficacy of the Er:YAG laser for vitreous liquefaction. Vitreous liquefaction by means of Er:YAG laser pulses was per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Klinische Monatsblätter für Augenheilkunde 1998-01, Vol.212 (1), p.50-54
Hauptverfasser: Mrochen, M, Petersen, H, Wüllner, C, Seiler, T
Format: Artikel
Sprache:ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitrectomy performed by conventional guillotine devices includes the risk of mechanical damage to retina as well as other ocular structures. The present study aims to investigate the efficacy of the Er:YAG laser for vitreous liquefaction. Vitreous liquefaction by means of Er:YAG laser pulses was performed using a special handpiece. The output of an Er:YAG laser operating at 2.94 microns was coupled into a ZrF optical fibre (length 2 m) which ended inside a cavity located at the quartz tip (diameter 320 microns) of the handpiece where tissue ablation took place. The viscosity of the liquefied vitreous was determined by rotation viscosimetry and compared to liquefied vitreous obtained by mechanical vitrectomy. In addition, the aspiration flow (ml/min) was correlated to the repetition/cutting rate of the laser and the cutter. The temperature rise at the handpiece was recorded with a micro thermocouple. The cutting threshold was determined to 5 mJ +/- 3 mJ at a pulse duration of 200 microseconds. The viscosity of the vitreous liquefied with the Er:YAG laser was 31 +/- 10 mPa s which is similar to the results of mechanical vitrectomy (42 +/- 19 mPa s) but significant less than that of normal vitreous (880 +/- 280 mPa s). The aspiration of the laser handpiece in dependence to the repetition rate increases linear up to 2.6 ml/min at 30 Hz. The temperature increase at the handpiece was < 1 K under vitrectomy conditions (aspiration and irrigation) with an averaged laser power of 0.3 W (10 mJ at 30 Hz). The decreased vacuum forces used by the laser vitrectomy system may result in less mechanical stress to the retina as well as intravitreal structures which may be attached to it. An Er:YAG laser vitrectomy system may offer the potential of fewer complications during vitrectomy.
ISSN:0023-2165