Serine Protease of Hepatitis C Virus Expressed in Insect Cells as the NS3/4A Complex

Hepatitis C virus (HCV) protease NS3 and its protein activator NS4A participate in the processing of the viral polyprotein into its constituent nonstructural proteins. The NS3/4A complex is thus an attractive target for antiviral therapy against HCV. We expressed the full-length NS3 and NS4A in inse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1998-03, Vol.37 (10), p.3392-3401
Hauptverfasser: Sali, Dasa Lipovsek, Ingram, Richard, Wendel, Michele, Gupta, Divya, McNemar, Charles, Tsarbopoulos, Anthony, Chen, Janice W, Hong, Zhi, Chase, Robert, Risano, Christine, Zhang, Rumin, Yao, Nanhua, Kwong, Ann D, Ramanathan, Lata, Le, Hung V, Weber, Patricia C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatitis C virus (HCV) protease NS3 and its protein activator NS4A participate in the processing of the viral polyprotein into its constituent nonstructural proteins. The NS3/4A complex is thus an attractive target for antiviral therapy against HCV. We expressed the full-length NS3 and NS4A in insect cells as a soluble fusion protein with an N-terminal polyhistidine tag and purified the two proteins to homogeneity. Cleavage at the junction between HisNS3 and NS4A occurs during expression, producing a noncovalent complex between HisNS3 and NS4A with a subnanomolar dissociation constant. We purified the HisNS3/4A complex by detergent extraction of cell lysate and by metal chelate chromatography. We removed the His tag by thrombin cleavage and then further purified the complex by gel filtration. The purified NS3/4A complex is active in a protease assay using a synthetic peptide substrate derived from the NS5A−NS5B junction, with k cat/K m of 3700 (± 600) M-1 s-1, an order of magnitude above those previously reported for NS3 expressed by other strategies. This high protease activity implies that the full-length sequences of NS3 and NS4A are required for optimal activity of the NS3 protease domain. We examined the dependence of the NS3/4A protease activity on buffer conditions, temperature, and the presence of detergents. We find that, under most conditions, NS3 protease activity is dependent on the aggregation state of the NS3/4A complex. The monodisperse, soluble form of the NS3/4A complex is associated with the highest protease activity.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi972010r