A comparative study of elastic properties of rat and guinea pig parenchymal strips

Constricted guinea pig (GP) airways are much less sensitive to changes in transpulmonary pressure (Ptp) than are those of the rat. The object of this study was to investigate whether differences in the mechanical behavior of the lung parenchyma could explain differences between the two species in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine 1998-03, Vol.157 (3), p.846-852
Hauptverfasser: SALERNO, F. G, PARE, P, LUDWIG, M. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Constricted guinea pig (GP) airways are much less sensitive to changes in transpulmonary pressure (Ptp) than are those of the rat. The object of this study was to investigate whether differences in the mechanical behavior of the lung parenchyma could explain differences between the two species in the interdependence of the airway and parenchyma. Subpleural lung strips from guinea pigs and rats were excised and suspended in an organ bath. One end of each strip was attached to a force transducer and the other to a servo-controlled lever arm that effected length (L) changes in the strip. Sinusoidal oscillations at varying frequencies and amplitudes were applied at different resting tensions. Measurements of L and resting tension (T) were recorded during baseline conditions and after acetylcholine (ACh) challenge. Elastance (E) and resistance (R) were calculated by fitting changes in T and L to the equation of motion. During sinusoidal oscillations, E and R in the two species were different in both the unconstricted and constricted states. The effect of T on E was significantly different in rats and GPs; E was less dependent on T in GPs. Insofar as E is a measure of the load against which airway smooth muscle (ASM) contracts, this difference may represent a potential mechanism to explain why constricted GP airways are less sensitive to changes in Ptp.
ISSN:1073-449X
1535-4970
DOI:10.1164/ajrccm.157.3.9705078