Relation of pulmonary vein to mitral flow velocities by transesophageal doppler echocardiography : effect of different loading conditions
It has previously been demonstrated that predictable changes occur in mitral flow velocities under different loading conditions. The purpose of this study was to relate changes in pulmonary venous and mitral flow velocities during different loading conditions as assessed by transesophageal echocardi...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 1990-05, Vol.81 (5), p.1488-1497 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has previously been demonstrated that predictable changes occur in mitral flow velocities under different loading conditions. The purpose of this study was to relate changes in pulmonary venous and mitral flow velocities during different loading conditions as assessed by transesophageal echocardiography in the operating room. Nineteen patients had measurements of hemodynamics, that is, mitral and pulmonary vein flow velocities during the control situation, a decrease in preload by administration of nitroglycerin, an increase in preload by administration of fluids, and an increase in afterload by infusion of phenylephrine. There was a direct correlation between the changes in the mitral E velocity and the early peak diastolic velocity in the pulmonary vein curves (r = 0.61) as well as a direct correlation between the deceleration time of the mitral and pulmonary venous flow velocities in early diastole (r = 0.84). This indicates that diastolic flow velocity in the pulmonary vein is determined by the same factors that influence the mitral flow velocity curves. A decrease in preload caused a significant reduction in the initial E velocity and prolongation of deceleration time, and an increase in preload caused an increase in E velocity and shortening of deceleration time. An increase in afterload produced a variable effect on the initial E velocity and deceleration time and was dependent on the left ventricular filling pressure. The change in systolic forward flow velocity in the pulmonary vein was directly proportional to the change in cardiac output (r = 0.60). The pulmonary capillary wedge pressure correlated best with the flow velocity reversal in the pulmonary vein at atrial contraction (r = 0.81). Use of pulmonary vein velocities in conjunction with mitral flow velocities can help in understanding left ventricular filling. |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/01.cir.81.5.1488 |