Synthesis and biological evaluation of prodrugs of zidovudine

A series of prodrugs of zidovudine (AZT) has been synthesized in an effort to enhance the uptake of the prodrugs by the HIV-1 infected cells and to increase the plasma half-life of AZT. The 5'-OH function of AZT was esterified with various acids in the presence of DCC and 4-(dimethylamino)pyrid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 1990-05, Vol.33 (5), p.1505-1510
Hauptverfasser: Aggarwal, Sunil K, Gogu, Sudhir R, Rangan, S. R. S, Agrawal, Krishna C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of prodrugs of zidovudine (AZT) has been synthesized in an effort to enhance the uptake of the prodrugs by the HIV-1 infected cells and to increase the plasma half-life of AZT. The 5'-OH function of AZT was esterified with various acids in the presence of DCC and 4-(dimethylamino)pyridine (DMAP). The prodrug moieties included (a) morpholine and N-phenylpiperazine-1-acetic acid, (b) 1,4-dihydro-1-methyl-3-nicotinic acid, (c) retinoic acid, and (d) certain amino acids. The anti-HIV-1 activity of the esters was determined in peripheral blood lymphocytes. The IC50 for AZT in this system was 0.12 microM whereas for prodrugs it ranged from 0.05 to 0.2 microM. The prodrugs were generally less cytotoxic than AZT except the retinoic acid ester. In vitro hydrolysis of the various esters in human plasma indicated that these agents were relatively stable toward plasma esterases with t1/2 ranging from 10 to 240 min. Drug uptake studies in H9 cells with radiolabeled analogues demonstrated that the retinoic acid ester achieved approximately 4-fold higher intracellular concentration than [3H]AZT. However, 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester (5) was the most active agent of this series and had a higher therapeutic index than AZT.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm00167a034