Sea urchin ovoperoxidase: oocyte-specific member of a heme-dependent peroxidase superfamily that functions in the block to polyspermy
Ovoperoxidase is one of several oocyte-specific proteins that are stored within sea urchin cortical granules, released during the cortical reaction, and incorporated into the newly formed fertilization envelope. Ovoperoxidase plays a particularly important role in this process, crosslinking the enve...
Gespeichert in:
Veröffentlicht in: | Mechanisms of development 1998, Vol.70 (1), p.77-89 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ovoperoxidase is one of several oocyte-specific proteins that are stored within sea urchin cortical granules, released during the cortical reaction, and incorporated into the newly formed fertilization envelope. Ovoperoxidase plays a particularly important role in this process, crosslinking the envelope into a hardened matrix that is insensitive to biochemical and mechanical challenges and thus providing a permanent block to polyspermy. Here we present the primary structures of two ovoperoxidases as predicted from cDNAs cloned from the sea urchins
Strongylocentrotus purpuratus (AF035380) and
Lytechinus variegatus (AF035381). We also present a proposed scheme for the post-translational processing of ovoperoxidase based upon comparisons between the cDNA and protein structures and taking into account previously published reports. The sea urchin ovoperoxidase sequences conform to a profile shared by members of a heme-dependent animal peroxidase family, including the mammalian myelo-, lacto-, eosinophil, and thyroid peroxidases. Using in situ RNA hybridizations, we showed that the mRNA of
S.
purpuratus ovoperoxidase (4 kb) is present exclusively in oocytes, and is turned over rapidly following germinal vesicle breakdown. Taking into account our immunoblot and N-terminal sequencing data along with reports from similar peroxidases, we propose that ovoperoxidases are synthesized in a pre-pro form and proteolytically processed to result in the 70 and 50 kDa forms that are found in the fertilization envelope. The sequence and structural data presented here will facilitate our continuing studies of the biogenesis of cortical granules and the fertilization envelope. Additionally, since ovoperoxidase activities have been reported in a wide range of animals, these cDNAs will be useful in uncovering similar peroxidases used in the fertilization reactions of other metazoan eggs. |
---|---|
ISSN: | 0925-4773 1872-6356 |
DOI: | 10.1016/S0925-4773(97)00178-0 |