Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel®) in patients with schizophrenia

Quetiapine (Seroquel) is a novel antipsychotic with an atypical profile in animal models and a relatively short plasma half-life of 2.5 5 h. In the present study, we used PET to compare the time course of blockade of dopamine D2 and serotonin 5HT2 receptors of quetiapine using C11-raclopride and C11...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychopharmacologia 1998, Vol.135 (2), p.119-126
Hauptverfasser: GEFVERT, O, BERGSTRÖM, M, LANGSTRÖM, B, LUNDBERG, T, LINDSTRÖM, L, YATES, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quetiapine (Seroquel) is a novel antipsychotic with an atypical profile in animal models and a relatively short plasma half-life of 2.5 5 h. In the present study, we used PET to compare the time course of blockade of dopamine D2 and serotonin 5HT2 receptors of quetiapine using C11-raclopride and C11-N-methyl-spiperone as ligands, parallel to monitoring plasma drug concentrations. It was an open study in 11 schizophrenic men using a fixed dose of 450 mg quetiapine. Eight men completed the 29 days treatment, followed by four PET scans performed over a 26-h period after withdrawal of the compound. Quetiapine was shown to bind to dopamine D2 receptors in striatum and 2 h (t[max]) after the last dose, 44% receptor occupancy was calculated. After 26 h it had dropped to the same level as was found in untreated healthy volunteers. Serotonin 5HT2 receptor blockade in the frontal cortex was 72% after 2 h, which declined to 50% after 26 h. The terminal plasma half-life of quetiapine was 5.3 h. Clinically, our eight patients had good antipsychotic effect without any extrapyramidal side-effects. Our data shows that quetiapine has a relatively low affinity for dopamine D2 receptors, with an occupancy half-life (10 h), which was about twice as long as that for plasma. A more prolonged blockade of the serotonin 5HT2 receptors was found in the frontal cortex, with receptor occupancy half-life of 27 h. Compared to clozapine, as demonstrated in other studies, quetiapine has much the same ratio of D2/5HT2 occupancy. This could suggest that the combination of D2/5HT2 receptor blockade contributes to the antipsychotic effect and a low incidence of EPS seen with quetiapine in comparative phase three trials. Our results also confirm the clinical data that quetiapine can be administered twice daily.
ISSN:0033-3158
1432-2072
DOI:10.1007/s002130050492