Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons

Eight charge isoforms of catalase (EC 1.11.1.6.) appeared in the peroxisomes of sunflower cotyledons during growth after germination (2.5 days of dark, continuous light thereafter). In the light, when glyoxysomes were transformed to leaf-type peroxisomes, the five more-basic forms (CAT 1 through CAT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 1990-04, Vol.278 (1), p.258-264
Hauptverfasser: Eising, Rainer, Trelease, Richard N., Ni, Weiting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eight charge isoforms of catalase (EC 1.11.1.6.) appeared in the peroxisomes of sunflower cotyledons during growth after germination (2.5 days of dark, continuous light thereafter). In the light, when glyoxysomes were transformed to leaf-type peroxisomes, the five more-basic forms (CAT 1 through CAT 5) became more prominent, while amounts of the three more-acidic forms (CAT 6 through CAT 8) decreased considerably. The isoforms CAT 1 through CAT 5 were hybrids of 55-and 59-kDa subunits, whereas CAT 6 through CAT 8 contained 55-kDa subunits exclusively. The catalase translation products changed during the transition of glyoxysomes to leaf-type peroxisomes. Polyadenylated RNA from 2-day-old cotyledons directed synthesis of 56-kDa subunits, whereas 59-kDa subunits predominated after in vitro translation of RNA from 4-day-old cotyledons. Both translation products were processed to lower molecular weight forms in vivo. The 56-kDa translation products were precursors for 55-kDa subunits in glyoxysomes. It could not be decided however, whether the 59-kDa precursors were processed to 56-kDa or 55-kDa subunits, because both subunits of lower molecular weight were present in leaf-type peroxisomes. Some of the 59-kDa precursors escaped proteolytic processing and formed hybrid isoforms (CAT 1 through CAT 5) with mature 55-kDa subunits. This type of isoform formation, i.e., condensation of mature and unprocessed subunits, has not yet been described for other plant catalases. In summary, the results showed that the postgerminative changes in the number and abundance of catalase isoforms resulted from changes in translation (transcription) of catalase precursors and assembly of proteolytically processed and unprocessed subunits into tetramers within peroxisomes acquiring leaf peroxisomal function.
ISSN:0003-9861
1096-0384
DOI:10.1016/0003-9861(90)90256-X