Novel Aspects of the Electrophysiology of Mitochondrial Porin

The recent findings that mitochondrial porin, VDAC, participates in supramolecular complexes and is present in the plasmamembrane need to be reconciled with its biophysical properties. We report here that VDAC often displays previously unobserved or unappreciated behaviors. Reconstituted VDAC can: a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 1998-02, Vol.243 (1), p.258-263
Hauptverfasser: Báthori, György, Szabó, Ildikó, Schmehl, Ibolya, Tombola, Francesco, De Pinto, Vito, Zoratti, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent findings that mitochondrial porin, VDAC, participates in supramolecular complexes and is present in the plasmamembrane need to be reconciled with its biophysical properties. We report here that VDAC often displays previously unobserved or unappreciated behaviors. Reconstituted VDAC can: a) exhibit fast gating when in any of many conductance substates; b) close completely, although briefly, on its own; c) close for long periods, in the presence of König's polyanion; d) take several milliseconds to re-open when an applied transmembrane potential is switched off; e) be desensitized by prolonged exposure to high voltages, so that it will not re-open to the full conductance state upon subsequent return to zero voltage; f) display polarity-dependent voltage-induced closure. These behaviors are especially noticeable when the observations are conducted on a single reincorporated channel, suggesting that interactions between copies of VDAC may play a role in determining its electrophysiological properties. Any model of VDAC's structure, gating and function should take these observations into account.
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.1997.7926