Orientational Distribution of α-Helices in the Colicin B and E1 Channel Domains: A One and Two Dimensional 15N Solid-State NMR Investigation in Uniaxially Aligned Phospholipid Bilayers
Thermolytic fragments of the channel-forming bacterial toxins colicin B and colicin E1 were uniformly labeled with the 15N isotope and reconstituted into uniaxially oriented membranes. These well-aligned samples were investigated by proton-decoupled 15N solid-state NMR spectroscopy at 40.5 and 71.0...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1998-01, Vol.37 (1), p.16-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermolytic fragments of the channel-forming bacterial toxins colicin B and colicin E1 were uniformly labeled with the 15N isotope and reconstituted into uniaxially oriented membranes. These well-aligned samples were investigated by proton-decoupled 15N solid-state NMR spectroscopy at 40.5 and 71.0 MHz. The one dimensional spectra indicate a predominant orientation of the colicin α-helices parallel to the bilayer surface but also the presence of a considerable proportion of peptide bonds that align in a transmembrane direction. The orientational distribution of 15N-labeled amide bonds is nearly identical for colicin B and E1, each a representative of a different group of membrane-active colicins. This comparison indicates common structural features of the water-soluble as well as the bilayer-associated proteins. When the pH is lowered, the orientational distribution of amide vectors exhibits only a small shift from in-plane to transmembrane orientations, in agreement with increased affinity and activity of colicins at acidic conditions. The 15N spectral line shape was independent of the bilayer phospholipid composition (100−75 mol % phosphatidylcholine/0−25 mol % phosphatidylglycerol) or the protein-to-lipid ratio in the range 1.7−12 wt %. Two dimensional separated local field spectroscopy (PISEMA) resolves almost 200 15N resonances of the colicin B channel protein. Approximately 50 15N signals resonate in a region characteristic of transmembrane helical residues, in strong support of the previously suggested umbrella conformation of the closed colicin channel. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi9724671 |