The Role of Actin-binding Protein 280 in Integrin-dependent Mechanoprotection
To survive in a mechanically active environment, cells must adapt to variations of applied membrane tension. A collagen-coated magnetic bead model was used to apply forces directly to the actin cytoskeleton through integrin receptors. We demonstrate here that by a calcium-dependent mechanism, human...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1998-01, Vol.273 (3), p.1689-1698 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To survive in a mechanically active environment, cells must adapt to variations of applied membrane tension. A collagen-coated magnetic bead model was used to apply forces directly to the actin cytoskeleton through integrin receptors. We demonstrate here that by a calcium-dependent mechanism, human fibroblasts reinforce locally their connection with extracellular adhesion sites by inducing actin assembly and by recruiting actin-binding protein 280 (ABP-280) into cortical adhesion complexes. ABP-280 was phosphorylated on serine residues as a result of force application. This phosphorylation and the force-induced actin reorganization were largely abrogated by inhibitors of protein kinase C. In a human melanoma cell line that does not express ABP-280, actin accumulation could not be induced by force, whereas in stable transfectants expressing ABP-280, force-induced actin accumulation was similar to human fibroblasts. Cortical actin assembly played a role in regulating the activity of stretch-activated, calcium-permeable channels (SAC) since sustained force application desensitized SAC to subsequent force applications, and the decrease in stretch sensitivity was reversed after treatment with cytochalasin D. ABP-280-deficient cells showed a >90% increase in cell death compared with ABP-280+ve cells after force application. We conclude that ABP-280 plays an important role in mechanoprotection by reinforcing the membrane cortex and desensitizing SACs. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.273.3.1689 |