Structure of human pancreatic lipase
PANCREATIC lipase (triacylglycerol acyl hydrolase) fulfills a key function in dietary fat absorption by hydrolysing triglycerides into diglycerides and subsequently into monoglycerides and free fatty acids. We have determined the three-dimensional structure of the human enzyme, a single-chain glycop...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1990-02, Vol.343 (6260), p.771-774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PANCREATIC lipase (triacylglycerol acyl hydrolase) fulfills a key function in dietary fat absorption by hydrolysing triglycerides into diglycerides and subsequently into monoglycerides and free fatty acids. We have determined the three-dimensional structure of the human enzyme, a single-chain glycoprotein of 449 amino acids, by X-ray crystallography and established its primary structure by sequencing complementary DNA clones. Enzymatic activity is lost after chemical modification of Ser 152 in the porcine enzyme
1,2
, indicating that this residue is essential in catalysis, but other data
3,4
are more consistent with a function in interfacial recogni-tion. Our structural results are evidence that Ser 152 is the nucleophilic residue essential for catalysis. It is located in the larger N-terminal domain at the C-terminal edge of a doubly wound parallel β-sheet and is part of an Asp-His-Ser triad, which is chemically analogous to, but structurally different from, that in the serine proteases. This putative hydrolytic site is covered by a surface loop and is therefore inaccessible to solvent. Interfacial activation, a characteristic property of lipolytic enzymes acting on water-insoluble substrates at water-lipid interfaces, probably involves a reorientation of this flap, not only in pancreatic lipases but also in the homologous hepatic and lipoprotein lipases. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/343771a0 |