Structural Elucidation and Monokine-inducing Activity of Two Biologically Active Zwitterionic Glycosphingolipids Derived from the Porcine Parasitic Nematode Ascaris suum

The isolated neutral glycosphingolipid fraction from the pig parasitic nematode,Ascaris suum, was fractionated by silica gel chromatography to yield a neutral and a zwitterionic glycosphingolipid fraction, the latter of which mainly contained two zwitterionic glycosphingolipids termed components A a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-01, Vol.273 (1), p.466-474
Hauptverfasser: Lochnit, Günter, Dennis, Roger D., Ulmer, Artur J., Geyer, Rudolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The isolated neutral glycosphingolipid fraction from the pig parasitic nematode,Ascaris suum, was fractionated by silica gel chromatography to yield a neutral and a zwitterionic glycosphingolipid fraction, the latter of which mainly contained two zwitterionic glycosphingolipids termed components A and C. Preliminary chemical characterization with hydrofluoric acid treatment and immunochemical characterization with a phosphocholine-specific monoclonal antibody indicated that both components contained phosphodiester substitutions: phosphocholine for component A, and phosphocholine and phosphoethanolamine for component C. Both components were biologically active in inducing human peripheral blood mononuclear cells to release the inflammatory monokines tumor necrosis factor α, interleukin 1, and interleukin 6. Component A was the more bioactive molecule, and its biological activity was abolished on removal of the phosphocholine substituent by hydrofluoric acid. The glycosphingolipid components were structurally analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, liquid secondary ion mass spectrometry, methylation analysis, 1H NMR spectroscopy, exoglycosidase cleavage, and ceramide analysis. Their chemical structures were elucidated to be (see Structure I below), [Display omitted] The carbohydrate moiety oligosaccharide core was characterized as belonging to the arthro series of protostomial glycosphingolipids. The ceramide moiety was distinguished by (R)-2-hydroxytetracosanoic acid as the dominant fatty acid species and by the C17 iso-branched sphingosine and sphinganine bases, 15-methylhexadecasphing-4-enine and 15-methylhexadecasphinganine, respectively.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.1.466