Increased expression of a gene coding for NAD:glyceraldehyde-3-phosphate dehydrogenase during the transition from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum

We utilized differential plaque hybridization to identify three cDNA clones for transcripts which increase in abundance during the salinity-induced transition from C3 photosynthesis to crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinum. Although there are differences in the abundanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1990-02, Vol.265 (6), p.3497-3502
Hauptverfasser: Ostrem, J A, Vernon, D M, Bohnert, H J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We utilized differential plaque hybridization to identify three cDNA clones for transcripts which increase in abundance during the salinity-induced transition from C3 photosynthesis to crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinum. Although there are differences in the abundance of these transcripts in unstressed tissue, steady-state levels of all three increased within 30 h following irrigation with 0.5 M NaCl. One cDNA encodes the cytosolic form of glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating) (NAD-GAPDH], an enzyme involved in the production of phosphoenolpyruvate for CO2 fixation at night and the conversion of pyruvate to storage carbohydrate during the day. Coding region and 3'-noncoding sequence probes were used to examine the expression of NAD-GAPDH transcripts in leaf and root tissue. We show that the gene encoding the NAD-GAPDH cDNA is expressed in both leaf and root tissue during C3 photosynthesis and CAM. NAD-GAPDH transcript levels increase rapidly in leaf (but not in root) tissue during the transition to CAM. Our data indicate that the predominant NAD-GAPDH transcript expressed during C3 photosynthesis and CAM is encoded by a single gene in M crystallinum. These results imply that the transition to CAM in some cases involves an upward readjustment in the level of a gene product expressed during C3 photosynthesis, rather than the expression of a CAM-specific isoform with unique regulatory or kinetic properties.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)39796-0