Dissociation of the effect of caldesmon on the ATPase activity and on the binding of smooth heavy meromyosin to actin by partial digestion of caldesmon

We have proposed earlier that caldesmon inhibits the actin-activated ATPase activity of smooth muscle heavy meromyosin (HMM) by inhibiting the binding of the HMM.ATP complex to the productive site of actin (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1868-1885). This has been diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1990-02, Vol.265 (5), p.2929-2934
Hauptverfasser: VELAZ, L, INGRAHAM, R. H, CHALOVICH, J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have proposed earlier that caldesmon inhibits the actin-activated ATPase activity of smooth muscle heavy meromyosin (HMM) by inhibiting the binding of the HMM.ATP complex to the productive site of actin (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1868-1885). This has been difficult to prove directly because caldesmon also binds to HMM and it is difficult to distinguish the actin-caldesmon-HMM complex from the actin-caldesmon complex in binding studies. We have eliminated the interaction between caldesmon and smooth HMM by digestion of caldesmon with chymotrypsin. This cleaved caldesmon inhibits the actin-activated ATPase rate of smooth HMM and this inhibition is correlated with a decrease in the binding of HMM.ATP to actin. Therefore, caldesmon functions by inhibiting the binding of the myosin-ATP complex to actin regardless of the source of myosin. We have also isolated the myosin-binding region of caldesmon and have performed a partial sequence. Comparison of this sequence with the derived sequence of caldesmon demonstrates, unequivocally, that the myosin-binding region of caldesmon begins at the amino terminus and extends beyond the first Cys residue.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)39890-4