Evidence for the allosteric regulation of the mitochondrial K+/H+ antiporter by matrix protons

It is well accepted that the mitochondrial K+/H+ antiporter is regulated by matrix Mg2+; however, this is not the only factor controlling its activity. The precise conditions used to deplete divalent cations have profound effects on the subsequent activity of the antiporter in a KOAc assay medium. E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1990-02, Vol.265 (5), p.2538-2545
Hauptverfasser: BEAVIS, A. D, GARLID, K. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well accepted that the mitochondrial K+/H+ antiporter is regulated by matrix Mg2+; however, this is not the only factor controlling its activity. The precise conditions used to deplete divalent cations have profound effects on the subsequent activity of the antiporter in a KOAc assay medium. Examination of the proton fluxes during both pretreatment and subsequent assay of K+/H+ antiport reveals that differences in K+/H+ antiport activity correlate very well with differences in matrix pH. Thus, inhibition of the K+/H+ antiporter following depletion of Mg2+ appears to result from inhibition by matrix protons. To test this hypothesis, we have examined the effect of modulating matrix pH in three different ways on the activity of the K+/H+ antiporter: 1) lowering the pH of the K+ pretreatment medium to 6.7 leads to inactivation of the K+/H+ antiporter; 2) adding NH4+ to the assay medium eliminates the lag in activity induced by depleting Mg2+ in a pretreatment medium containing NH4+; 3) permitting mitochondria to respire in a tetraethylammonium(+)-containing pretreatment medium activates the K+/H+ antiporter. Each one of these procedures leads to a change in matrix pH and an effect on K+/H+ antiport which appears to require regulation of the K+/H+ antiporter by matrix protons. This finding is not only physiologically significant but also provides a useful definition of conditions required for unmasking the K+/H+ antiporter in a reproducible manner.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)39834-5