Delta-opioid receptors expressed by Jurkat T cells enhance IL-2 secretion by increasing AP-1 complexes and activity of the NF-AT/AP-1- binding promoter element

Recent molecular evidence points to transient and/or stage-specific expression of delta- and kappa-opioid receptors by thymic and peripheral T lymphocytes. Since medical treatments or stress commonly increase opioid levels, it is important to understand the mechanisms by which opioids affect T lymph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1997-12, Vol.159 (11), p.5431-5440
Hauptverfasser: Hedin, KE, Bell, MP, Kalli, KR, Huntoon, CJ, Sharp, BM, McKean, DJ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent molecular evidence points to transient and/or stage-specific expression of delta- and kappa-opioid receptors by thymic and peripheral T lymphocytes. Since medical treatments or stress commonly increase opioid levels, it is important to understand the mechanisms by which opioids affect T lymphocyte functions. We therefore created and studied a T cell line expressing the cloned delta-opioid receptor (DOR1). DOR1 ligation by a specific DOR1 agonist, deltorphin, augmented IL-2 secretion by synergizing with signals from TCR-CD3 and CD28. Reporter gene constructs were used to map this effect of deltorphin to the AP-1- and NF-AT/AP-1-binding sites of the IL-2 promoter. Although DOR1 signaling increased [Ca2+]i, deltorphin enhanced transcriptional activity of the NF-AT/AP-1-binding site via a mechanism independent of calcineurin and distinct from the effects of elevated [Ca2+]i. Deltorphin also increased accumulation of AP-1 transcription factor complexes, suggesting that DOR1 augments IL-2 secretion by increasing the AP-1 component of the NF-AT/AP-1 transcription factor. These results advance the molecular understanding of opioid effects on lymphocytes, and in addition, demonstrate regulation of IL-2 synthesis and secretion by the novel mechanism of receptor-mediated AP-1 induction.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.159.11.5431