Insulin-sensitive phosphorylation of serine 1293/1294 on the human insulin receptor by a tightly associated serine kinase
In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. Analysis of the serine phosphate incorporated into partially purified or...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1990-01, Vol.265 (2), p.947-954 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after
its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. Analysis of the serine
phosphate incorporated into partially purified or highly purified insulin receptor suggests that an insulin-sensitive serine
kinase (IRSK) copurifies with the insulin receptor. Following trypsin digestion, reversed-phase high pressure liquid chromatography
(HPLC) analysis of the phosphorylated, affinity-purified insulin receptor preparation reveals phosphopeptide profiles similar
to those of trypsin-digested receptors immunoprecipitated from 32P-labeled fibroblasts overexpressing the human insulin receptor.
The major insulin-stimulated HPLC phosphopeptide peak from insulin receptors labeled in intact cells contains a hydrophilic
phosphoserine-containing peptide which rapidly elutes from a C18 column. HPLC and two-dimensional separation indicate that
the same phosphopeptide is obtained when affinity-purified insulin receptors are phosphorylated by IRSK. The serine containing
tryptic peptide within the cytoplasmic domain of the human insulin receptor predicted to elute most rapidly upon HPLC had
the sequence SSHCQR corresponding to residues 1293-1298. A synthetic peptide containing this sequence is phosphorylated by
the insulin receptor/IRSK preparation. After alkylation and trypsin digestion, the synthetic phosphopeptide comigrates with
the alkylated, tryptic phosphopeptide derived from insulin receptor phosphorylated in vitro by IRSK. We propose that serine
1293 or 1294 of the human insulin receptor is a major site(s) phosphorylated on the insulin receptor in intact cells and is
phosphorylated by IRSK. Furthermore, insulin added directly to affinity-purified insulin receptor/IRSK preparations stimulates
the phosphorylation of synthetic peptides corresponding to this receptor phosphorylation site and another containing threonine
1336. Kemptide phosphorylation is not stimulated by insulin under these conditions. No phosphorylation of peptide substrates
for Ca2+/calmodulin-dependent protein kinase, protein kinase C, casein kinase II, or cGMP-dependent protein kinase by IRSK
is detected. These data indicate that IRSK exhibits specificity for the insulin receptor and may be activated by the insulin
receptor tyrosine kinase in an insulin-dependent manner. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(19)40141-5 |